Sunday, November 15, 2009

Global Dimming

Global dimming is the gradual reduction in the amount of global direct irradiance at the Earth's surface that was observed for several decades after the start of systematic measurements in the 1950s. The effect varies by location, but worldwide it has been estimated to be of the order of a 4% reduction over the three decades from 1960–1990. However, after discounting an anomaly caused by the eruption of Mount Pinatubo in 1991, a very slight reversal in the overall trend has been observed.[1]

It is thought to have been caused by an increase in particulates such as sulphate aerosols in the atmosphere due to human action. The switch from a "global dimming" trend to a "brightening" trend in 1990 happened just as global aerosol levels started to decline.

Global dimming has interfered with the hydrological cycle by reducing evaporation and may have reduced rainfall in some areas. Global dimming also creates a cooling effect that may have partially masked the effect of greenhouse gases on global warming.

Deliberate manipulation of this dimming effect is now being considered as a geoengineering technique to reduce the impact of global warming.

Causes and effects

It is thought that global dimming is probably due to the increased presence of aerosol particles in the atmosphere caused by human action.[2] Aerosols and other particulates absorb solar energy and reflect sunlight back into space. The pollutants can also become nuclei for cloud droplets. Water droplets in clouds coalesce around the particles.[3] Increased pollution causes more particulates and thereby creates clouds consisting of a greater number of smaller droplets (that is, the same amount of water is spread over more droplets). The smaller droplets make clouds more reflective, so that more incoming sunlight is reflected back into space and less reaches the earth's surface. In models, these smaller droplets also decrease rainfall.[4]

Clouds intercept both heat from the sun and heat radiated from the Earth. Their effects are complex and vary in time, location, and altitude. Usually during the daytime the interception of sunlight predominates, giving a cooling effect; however, at night the re-radiation of heat to the Earth slows the Earth's heat loss.


Research

Eastern China. Dozens of fires burning on the surface (red dots) and a thick pall of smoke and haze (greyish pixels) filling the skies overhead. Photo taken by MODIS aboard NASA's Aqua satellite.

In the late-1960s, Mikhail Ivanovich Budyko worked with simple two-dimensional energy-balance climate models to investigate the reflectivity of ice.[5] He found that the ice-albedo feedback created a positive feedback loop in the Earth's climate system. The more snow and ice, the more solar radiation is reflected back into space and hence the colder Earth grows and the more it snows. Other studies found that pollution or a volcano eruption could provoke the onset of an ice age.[6][7]

In the mid-1980s, Atsumu Ohmura, a geography researcher at the Swiss Federal Institute of Technology, found that solar radiation striking the Earth's surface had declined by more than 10% over the three previous decades. His findings appeared to contradict global warming—the global temperature had been generally rising since the 70s. Less light reaching the earth seemed to mean that it should cool. Ohmura published his findings "Secular variation of global radiation in Europe" in 1989.[8] This was soon followed by others: Viivi Russak in 1990 "Trends of solar radiation, cloudiness and atmospheric transparency during recent decades in Estonia",[9] and Beate Liepert in 1994 "Solar radiation in Germany — Observed trends and an assessment of their causes".[10] Dimming has also been observed in sites all over the former Soviet Union.[11] Gerry Stanhill who studied these declines worldwide in many papers (see references) coined the term "global dimming".[12]

Independent research in Israel and the Netherlands in the late 1980s showed an apparent reduction in the amount of sunlight,[13] despite widespread evidence that the climate was actually becoming hotter. The rate of dimming varies around the world but is on average estimated at around 2–3% per decade. The trend reversed in the early 1990s. [1] It is difficult to make a precise measurement, due to the difficulty in accurately calibrating the instruments used, and the problem of spatial coverage. Nonetheless, the effect is almost certainly present.

The effect (2–3%, as above) is due to changes within the Earth's atmosphere; the value of the solar radiation at the top of the atmosphere has not changed by more than a fraction of this amount.[14]

Smog at the Golden Gate Bridge. Smog is a likely contributor to global dimming.

The effect varies greatly over the planet, but estimates of the terrestrial surface average value are:

  • 5.3% (9 W/m²); over 1958–85 (Stanhill and Moreshet, 1992)[12]
  • 2%/decade over 1964–93 (Gilgen et al., 1998)[15]
  • 2.7%/decade (total 20 W/m²); up to 2000 (Stanhill and Cohen, 2001)[16]
  • 4% over 1961–90 (Liepert 2002)[17]

Note that these numbers are for the terrestrial surface and not really a global average. Whether dimming (or brightening) occurred over the ocean has been a bit of an unknown though a specific measurement (see below, Causes) measured effects some 400 miles (643.7 km) from India over the Indian Ocean towards the Maldives Islands. Regional effects probably dominate but are not strictly confined to the land area, and the effects will be driven by regional air circulation. A 2009 review by Wild et al[18] found that widespread variation in regional and time effects. There was solar brightening beyond 2000 at numerous stations in Europe, the United States, and Korea. The brightening seen at sites in Antarctica during the 1990s, influenced by recovering from the Mount Pinatubo volcanic eruption in 1991, fades after 2000. The brightening tendency also seems to level off at sites in Japan. In China there is some indication for a renewed dimming, after the stabilization in the 1990s. A continuation of the long-lasting dimming is also noted at the sites in India. Overall, the available data suggest continuation of the brightening beyond the year 2000 at numerous locations, yet less pronounced and coherent than during the 1990s, with more regions with no clear changes or declines. Therefore, globally, greenhouse warming after 2000 may be less modulated by surface solar variations than in prior decades. The largest reductions are found in the northern hemisphere mid-latitudes.[19] Visible light and infrared radiation seem to be most affected rather than the ultraviolet part of the spectrum.


Pan evaporation data

Over the last 50 or so years, pan evaporation has been carefully monitored. For decades, nobody took much notice of the pan evaporation measurements. But in the 1990s in Europe, Israel, and North America, scientists spotted something that at the time was considered very strange: the rate of evaporation was falling although they had expected it to increase due to global warming.[21] The same trend has been observed in China over a similar period. A decrease in solar irradiance is cited as the driving force. However, unlike in other areas of the world, in China the decrease in solar irradiance was not always accompanied by an increase in cloud cover and precipitation. It is believed that aerosols may play a critical role in the decrease of solar irradiance in China.[22]

BBC Horizon producer David Sington believes that many climate scientists regard the pan-evaporation data as the most convincing evidence of solar dimming.[23] Pan evaporation experiments are easy to reproduce with low-cost equipment, there are many pans used for agriculture all over the world and in many instances the data has been collected for nearly a half century. However, pan evaporation depends on some additional factors besides net radiation from the sun. The other two major factors are vapor pressure deficit and wind speed.[24] The ambient temperature turns out to be a negligible factor. The pan evaporation data corroborates the data gathered by radiometer[16][21] and fills in the gaps in the data obtained using pyranometers. With adjustments to these factors, pan evaporation data has been compared to results of climate simulations.[


Probable causes

NASA photograph showing aircraft contrails and natural clouds. The temporary disappearance of contrails over North America due to plane groundings after the September 11, 2001 attacks, and the resulting increase in diurnal temperature range gave empirical evidence of the effect of thin ice clouds at the Earth's surface.[26]

The incomplete combustion of fossil fuels (such as diesel) and wood releases black carbon into the air. Though black carbon, most of which is soot, is an extremely small component of air pollution at land surface levels, the phenomenon has a significant heating effect on the atmosphere at altitudes above two kilometers (6,562 ft). Also, it dims the surface of the ocean by absorbing solar radiation.[27]

Experiments in the Maldives (comparing the atmosphere over the northern and southern islands) in the 1990s showed that the effect of macroscopic pollutants in the atmosphere at that time (blown south from India) caused about a 10% reduction in sunlight reaching the surface in the area under the pollution cloud — a much greater reduction than expected from the presence of the particles themselves.[28] Prior to the research being undertaken, predictions were of a 0.5–1% effect from particulate matter; the variation from prediction may be explained by cloud formation with the particles acting as the focus for droplet creation. Clouds are very effective at reflecting light back out into space.

The phenomenon underlying global dimming may also have regional effects. While most of the earth has warmed, the regions that are downwind from major sources of air pollution (specifically sulfur dioxide emissions) have generally cooled. This may explain the cooling of the eastern United States relative to the warming western part.[29]

However some research shows that black carbon will actually increase global warming, being second only to CO2. They believe that soot will absorb solar energy and transport it to other areas such as the Himalayas where glacial melting occurs. It can also darken Arctic ice reducing reflectivity and increasing absorption of solar radiation.[30]

Some climate scientists have theorized that aircraft contrails (also called vapor trails) are implicated in global dimming, but the constant flow of air traffic previously meant that this could not be tested. The near-total shutdown of civil air traffic during the three days following the September 11, 2001 attacks afforded a unique opportunity in which to observe the climate of the United States absent from the effect of contrails. During this period, an increase in diurnal temperature variation of over 1 °C (1.8 °F) was observed in some parts of the U.S., i.e. aircraft contrails may have been raising nighttime temperatures and/or lowering daytime temperatures by much more than previously thought.[26]

Airborne volcanic ash can reflect the Sun's rays back into space and thereby contribute to cooling the planet. Dips in earth temperatures have been observed after large volcano eruptions such as Mount Agung in Bali that erupted in 1963, El Chichon (Mexico) 1983, Ruiz (Colombia) 1985, and Pinatubo (Philippines) 1991. But even for major eruptions, the ash clouds remain only for relatively short periods.[31]


No comments:

Post a Comment